
 

Abstract

 

The small battery capacity, ubiquity, and operational
diversity of wireless microsensor networks create unprece-
dented energy management challenges. The energy con-
sumption of microsensors is determined not only by the
node's physical hardware, but also by the algorithms and
protocols that impart functional demands on the hardware.
We therefore present design methodologies that foster
energy savings through collaboration across the hardware,
algorithm, and network layers, in contrast to techniques
that have explored only one of these spaces. For instance,
dynamic voltage scaling is coupled with the intelligent dis-
tribution of within-network computation to extend latency
deadlines and decrease supply voltages. The quality of
communication is parameterized into metrics that drive the
performance and energy consumption of the communica-
tion subsystem. Finally, the energy consumption of radios
is carefully characterized to improve the efficiency of mul-
tihop routes. Collaboration between node software and
hardware, and among the distributed nodes of the network,
improve energy-efficiency and extend operational lifetime.

 

1. Introduction

 

The idea of wireless microsensor networks has garnered
a great deal of attention and interest. A distributed wireless
microsensor network [1] consists of hundreds to several
thousands of small sensor nodes scattered throughout an
area of interest. Each node individually monitors its envi-
ronment and collects data as directed by the user, while the
network collaborates as a whole to deliver high-quality
observations to a central base station. The fusion of obser-
vations from different perspectives offers a high-resolution,
multi-dimensional picture of the environment that is not
possible with fewer sensors. The sheer number of nodes
naturally leads to the network’s fault-tolerance and robust-
ness to the loss of individual nodes, making maintenance
unnecessary. Nodes can be deployed simply by scattering
them about the region of interest or dropping them by air;
the nodes can organize themselves into networks without
user intervention.

These advantages, as well as the nodes’ small size,
make sensor networks ideal for any number of inhospitable
or inaccessible locations where deployment is difficult,
wires impractical, and maintenance impossible. For
instance, microsensors deployed in hostile environments
can monitor climate, classify moving vehicles, or provide
an early warning of chemical or radiation hazards. A
microsensor network distributed around the body, or per-
haps within it, can offer a rich fusion of vital signs to med-
ical professionals. Sensors within machines such as copiers
and industrial robots, can detect and report emerging faults
without the usual tangle of wires [2, 3, 4]. Microsensor net-
works promise to revolutionize how data is gathered.

A microsensor node integrates sensing, processing, and
communication sub-systems. Several researchers have
demonstrated operational nodes with low-power commer-
cial, off-the-shelf (COTS) components [5, 6, 7]. A repre-
sentative example is depicted in Figure 1 , which contains
an on-board acoustic sensor and A/D, a StrongARM pro-
cessor for data and protocol processing, power regulators
for dynamic energy management, and a 2.4 GHz Bluetooth
compatible radio. This particular node, dubbed 

 

µ

 

AMPS-1
[8], integrates these components onto stackable
55mm x 55mm boards as illustrated by Figure 2. Energy
dissipation of this COTS-based microsensor node is
reduced through a variety of techniques including fine-
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Figure 1: Architectural overview of the first generation
MIT sensor node (The MIT µAMPS project) based on
low-power off-the-shelf components. The node allows
algorithms to gracefully scale its energy consumption by
modifying hardware parameters.
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grain shutdown of inactive components through operating
system control, dynamic voltage and frequency scaling of
the processor core, approximate-processing algorithms,
and adjustable radio transmission power based on the
required range. More than one order of magnitude variation
in power dissipation is exhibited among the different power
management states. Power consumption can range from
30 mW to over 1 W.

 

2. The Hardware: Energy Scalability

 

Power aware hardware reacts gracefully to constantly
changing operational demands. As performance demands
increase or decrease, power aware hardware scales energy
consumption accordingly to adjust its performance on-the-
fly. Graceful energy scalability is highly desirable for any
energy-constrained wireless node since the operational
demands on a real-world node constantly change, and the
peak performance of the node is rarely needed. Energy
scalability is effected by key parameters that act as knobs
to adjust energy and performance simultaneously. The fol-
lowing characterization of a microsensor node’s energy
consumption reveals a number of these knobs within the
processing and radio subsystems.

 

2.1   Processing Energy

 

The energy of digital circuits within the node can be
characterized as the energy required to process a bit of
data, whether that processing be a filtering algorithm,
beamforming operation, or Viterbi decoding. The energy
consumed per bit is expressed as the sum of digital switch-
ing and leakage energies:
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 the supply voltage, 
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bit

 

 is the switched capacitance
per processed bit, and 

 

T

 

bit

 

 the computational time required
per bit. 

 

C

 

bit

 

 and 

 

T

 

bit

 

 are themselves functions of the hard-
ware implementation and the operation being performed. 

 

I

 

0

 

and 

 

S

 

, which model digital leakage current, are functions of
the process technology. 

 

V

 

TH

 

 is the threshold voltage of the
transistors.

Energy-saving opportunities in digital processing can be
gleaned from the parameters of Eq. (1). Varying 

 

V

 

DD

 

through dynamic voltage scaling reduces switching energy
quadratically. Emerging techniques for dynamic 

 

V

 

TH

 

 scal-
ing reduce the exponential leakage term. Finally, the
amount of computation per bit (represented by 

 

C

 

bit

 

) can be
modulated by varying the strength of an algorithm. 

Dynamic voltage scaling

 

 

 

(DVS) reduces active power
by varying the supply voltage and clock frequency depend-
ing on the computational load [8, 9]. The processor’s fre-
quency is reduced to the lowest possible level that meets
the required performance constraints, and the supply volt-
age is reduced to attain additional energy savings from the
lower frequency. DVS is highly applicable to processors
within sensor nodes, as processor load can vary signifi-
cantly based on the node’s operational mode (e.g., sensing/
processing vs. data relay) and event statistics. Figure 3
depicts the measured energy consumed per operation for
the StrongARM processor with respect to the processor
clock frequency and supply voltage. The graph illustrates
the advantage of voltage scaling at reduced processing
loads. Note that at a fixed supply voltage, the leakage
energy per operation increases as the allowed switching
time per operation increases. The supply voltage is sched-
uled by an embedded operating system and is controlled at
the physical-layer by an efficient variable voltage DC-DC
converter.

Further energy reductions are possible by coordinating a
second parameter, the device threshold voltage 

 

V

 

TH

 

, with
the supply voltage. Device thresholds can be adjusted
through substrate biasing in triple-well CMOS technology.
Just as 

 

V

 

DD

 

 scaling exploits the trade-off between propaga-

Figure 2: The µAMPS-1 sensor node: sensor and pro-
cessor sub-system (left) and radio communication mod-
ule (right).
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Figure 3: Dynamic Voltage Scaling on the SA-1100.



 

tion delay and switching energy, 

 

V

 

TH

 

 scaling can exploit a
trade-off between propagation delay and sub-threshold
leakage power. For every clock frequency, there exists an
optimal pair of parameters (

 

V

 

TH

 

, 

 

V

 

DD

 

) that minimizes
energy.

Figure 4 illustrates the impact of varying the power sup-
ply and threshold voltage on the performance and energy
dissipation of submicron circuits. Diagonal lines indicate
the (

 

V

 

TH

 

, 

 

V

 

DD

 

) values that will support operation of a 16-
bit adder for widely varying levels of performance between
10 kHz and 100 MHz. Circular contours represent the
increasing amount of energy consumed for each
(

 

V

 

TH

 

, 

 

V

 

DD

 

) around a minimum value at
(460 mV, 300 mV). The minimum-energy operating points
for each clock frequency, then, occur where each frequency
plot is tangent to an energy contour. These optimal points
are joined by a dotted line that represents the optimal
(

 

V

 

TH

 

, 

 

V

 

DD

 

) for each clock frequency.
The optimal selections are most intuitive at the extremes

of performance. The highest performance can only be
achieved with a low 

 

V

 

TH

 

 

 

and high 

 

V

 

DD

 

, at the expense of
high switching and leakage energies. In the kilohertz
regime where high circuit latencies are tolerable, not only
is 

 

V

 

DD

 

 

 

lowered for reduced switching energy, but 

 

V

 

TH

 

 is
simultaneously raised to suppress leakage. In fact, the sup-
ply voltage is scaled 

 

below

 

 the threshold voltage; load
capacitances are switched by subthreshold leakage cur-
rents. As leakage currents are orders of magnitude lower
than drain currents in the strong inversion regime, both per-
formance and active power dissipation are substantially
reduced. Given the low performance demands of microsen-
sor nodes, operation in the subthreshold operating regime
is an exciting possibility. 

Finally, the amount of workload imposed on the digital
circuits (represented by 

 

C

 

bit

 

) can be varied by altering the

strength of a processing algorithm. For instance, in a Vit-
erbi decoder, computation varies exponentially with the
constraint length of the convolutional code. Workload vari-
ation can also be exploited by power-aware algorithms that
gracefully degrade result accuracy as the number of opera-
tions (and hence the required energy) is scaled back. Power
aware algorithms offer incremental refinement: the algo-
rithm yields a reasonable approximation of the answer after
a minimal number of operations, and the result grows
increasingly accurate as more and more operations are per-
formed.

 

2.2   Radio Energy 

 

The energy of radio communication is the sum of the
transmission energy of the sending node and the receiver
energy of the receiving node. A comprehensive model for
transmission energy is

 

(2)

 

The two main terms in the expression represent the ener-
gies of startup and transmission respectively. 

 

P

 

start

 

 and

 

T

 

start

 

 represent the power and latency of radio startup, 

 

P

 

tx-

Elec

 

 the active transmission power, 

 

P

 

rad

 

 the power radiated
from the antenna, 

 

N

 

 the number of bits transmitted, and 

 

R

 

the radio bit rate. The terms 

 

α

 

rad

 

 and 

 

β

 

rad

 

 allow a linear-
ized model for power amplifier and end-to-end antenna
losses. The efficiency of the power amplifier is often over-
looked in energy models, but with typical efficiencies of
around 10%, it is a crucial consideration for energy-effi-
cient wireless communication.

Airborne radio transmissions are attenuated by a path
loss in a power-law with distance, meaning that the rela-
tionship between radiated power 

 

P

 

rad

 

 and distance 

 

d

 

 is

 

(3)

 

P

 

rcvd

 

 is the power incident at the receiver, which may be,
for instance, the receiver’s sensitivity. 

 

P

 

1m

 

 is the signal
attenuation at one meter from the transmitter.

The energy of the receiver is modeled as 

 

(4)

 

Many terms are repeated from above; 

 

P

 

rxElec

 

 represents
the active receive power, and 

 

E

 

decbit

 

 the energy per bit
required to decode any error correction that may have been
applied. Note that this last term is a digital processing
energy in the form of Eq. (1).

A simple hook for energy 

 

vs. 

 

quality scalability within
the radio is the variation of the radiated power 

 

P

 

rad

 

, which
allows the range or error rate of communication to be tied
to the energy allocated to transmission. Note that the varia-
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Figure 4: Average energy dissipation and performance
for a 16-bit adder. The dotted line indicates the adder’s
optimal (Vth, Vdd) operating points for varying clock fre-
quencies. 
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tion of a convolutional code’s constraint length, a scalabil-
ity knob discussed in Section 2.1, expands the number of
transmitted bits N. Hence, this knob has energy implica-
tions for both digital and radio energy.

2.3   Power Scalability of µµµµAMPS-1

Many of the preceding “knobs” for energy scalability are
incorporated into the processor and radio modules of the
µAMPS-1 sensor node (Figure 2 above). The dynamic
voltage scaled processor operates from 0.9V to 1.6V at
clock frequencies ranging from 59 to 220 MHz. As shown
in Figure 5, the processor consumes up to three times less
energy when performing a computation at lower frequen-
cies and voltages. The µAMPS-1 radio transmitter offers a
power amplifier with variable output power between
+0 dBm and +20 dBm. As shown in Figure 6, this two
order of magnitude range in output power translates into a
factor of five in hardware energy consumption (200 mW to
1 W).

3. The Network: Collaborative Strategies

Inter-node communication provides opportunities for
two forms of energy-saving collaboration. Collaboration
can occur in two senses: nodes may cooperate among each
other to reduce energy consumed across the network, and
communication protocols may cooperate with the hardware
on which they run to reduce within-node energy consump-
tion.

3.1   Distributed Processing

Algorithm implementations for a sensor network can
take advantage of the network’s inherent capability for par-
allel processing to further reduce energy. Partitioning a
computation among multiple sensor nodes and performing
the computation in parallel permits a greater allowable
latency per computation, allowing energy savings through
frequency and voltage scaling. 

As an example, consider a target tracking application
that requires sensor data to be transformed into the fre-
quency domain through 1024-point FFTs [9]. The FFT
results are phase-shifted and summed in a frequency-
domain beamformer to calculate signal energies in 12 uni-
form directions, and the line-of-bearing (LOB) is estimated
as the direction with the most signal energy. By intersect-
ing multiple LOB’s at the basestation, the source’s location
can be determined. Figure 7a demonstrates the tracking
application performed with traditional clustering tech-
niques for a 7 sensor cluster. The sensors (S1-S6) collect
data and transmit the data directly to the cluster-head (S7),
where the FFT, beamforming and LOB estimation are per-
formed. Measurements on the SA-1100 at an operating
voltage of 1.5V and frequency of 206 MHz show that the
tracking application dissipates 27.27 mJ of energy. 

Distributing the FFT computation among the sensors
reduces energy dissipation. In the distributed processing
scenario of Figure 7b, the sensors collect data and perform
the FFTs before transmitting the FFT results to the cluster-
head. At the cluster-head, the FFT results are beamformed
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and the LOB estimate is found. Since the 7 FFTs are com-
puted in parallel, we can reduce the supply voltage and fre-
quency without sacrificing latency. When the FFTs are
performed at 0.9V, and the beamforming and LOB estima-
tion at the cluster-head are performed at 1.3V, then the
tracking application dissipates 15.16 mJ, a 44% improve-
ment in energy dissipation.

3.2   Energy-Scalable Communication

Graceful energy vs. quality scalability for wireless com-
munication can be achieved once the notion of communi-
cation “quality” is defined. Hence, we define
communication quality by four of its fundamental metrics:
range, latency, reliability, and energy. We then introduce an
API that allows an application to specify bounds on these
metrics. The latter three metrics can be bounded by direct
specification:
• set_max_latency(double usecs)
• set_min_reliability(double ber)
• set_max_energy(double ujoules)

With cooperation from a protocol layer that maintains
approximate distances to—and numbers of—neighboring
nodes, the communication range desired by an application
can be expressed in a variety of ways, whichever is most
convenient to the application:
• set_range(Distance d)
• set_range(int numberOfNearestNeighbors)
• set_destination(Node n)
• set_destination(Nodes n[])

This skeletal communication API allows an application
to expose tolerable bounds on latency, reliability, range,
and energy. Application designers that utilize wireless
communication have historically been reluctant to manipu-
late hardware energy knobs such as processor voltages or
transmit power. Introducing proper abstractions between
communication software and hardware can therefore
encourage energy savings.

To bridge the gap between these performance parameters
and the actual hardware “knobs” for energy scalability, we
introduce a power-aware middleware layer as illustrated in
Figure 8. The middleware layer is empowered with accu-

rate hardware energy models for the node’s digital process-
ing circuits and radio transceiver, such as those presented
in Section 2. This layer also maintains models for the
latency, reliability, and range of communication as a func-
tion of the low-level hardware parameters. 

With this information, the middleware can select the
minimum-energy hardware settings for the performance
level commanded through the API [10]. Figure 9 illustrates
a sample operational policy for the µAMPS-1 node, in
which an API-specified reliability and range (x- and y-
axes) are mapped to the radio transmission power and con-
volutional coding scheme that result in minimum energy
consumption. The upper-left hand corner of the graph rep-
resents the lowest quality transmission, achieved using
uncoded communication at a low transmission power. As
quality demands increase (moving toward the lower-right
of the graph), µAMPS-1 first commands more transmit
power. As µAMPS-1 has a high energy cost associated
with Viterbi decoding, increasing quality through transmis-
sion power is more energy-efficient than utilizing a convo-
lutional code. Convolutional coding is finally used once the
quality demands exceed the capabilities of uncoded, high-
power communication. The choice of hardware policies
(coding versus radiation in this example) is unique to the
energy consumption characteristics of each hardware plat-
form.

The amount of energy consumed by the operational poli-
cies of Figure 9 is illustrated by Figure 10. This figure
illustrates the energy required to attain a specified range
and reliability by choosing the minimum-energy hardware
policies for each operating point. We have achieved energy
vs. quality scaling in communication through a middleware
layer that serves as both an abstraction boundary and an
intelligent point of control.

3.3   Power Aware Multihop Routing

Since the path loss of radio transmission scales with dis-
tance in a greater-than-linear fashion, transmission energy
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can be reduced by dividing a long transmission into several
shorter ones. Intermediate nodes between a data source and
destination can serve as relays that receive and rebroadcast
data. This concept, known as multihop communication
[11], is analogous to the use of buffers over a long, on-chip
interconnect.

Figure 11 illustrates multihop communication to a base
station across a distance d using h hops. The power con-
sumed by this communication P(h, d) is 

(5)

where PrxElec and PtxElec represent the power required by
the receive and transmit electronics, PtxRad1 is the radiated
power required for a successful one-meter transmission,
and r is the path loss exponent. Since the last hop is always
received by an energy-unconstrained base station, there are
h transmitting and h-1 receiving nodes. Figure 12 evaluates
equation Eq. (5) over varying total transmission distances d
and one to four hops, using representative power consump-
tion parameters for COTS radios. 

The introduction of relay nodes is clearly a balancing
act between reduced transmission energy and increased
receive energy. Hops that are too short lead to excessive
receive energy. Hops that are too long lead to excessive
path loss. In between these extremes is an optimum trans-
mission distance called the characteristic distance dchar
[12]. The characteristic distance depends only on the
energy consumption of the hardware and the path loss
coefficient; dchar alone determines the optimal number of
hops. For typical COTS-based sensor nodes, dchar is about
35 meters.

The existence of a characteristic distance has two practi-

cal implications for microsensor networks. First, there are a
large class of applications for which the entire network
diameter will be less than dchar. For these applications, the
best communication policy is not to employ multihop at
all; direct transmission from each node to the base station
is the most energy-efficient communication scheme. For
today’s radio hardware, the typical dchar of 35 meters
exceeds the size of many interior spaces. Hence, until
advances in low-power receiver technology lead to a reduc-
tion in dchar, most indoor microsensor networks will not
save energy using a multihop routing protocol.

Our second concern is that it is often impractical to
ensure that all nodes are spaced exactly dchar apart. Nodes
may dropped by air, or their deployment constrained by
terrain or physical obstacles. Suppose that the deployed
nodes are placed as in Figure 13, a line of nodes and a base
station separated a distance of either dchar or dchar/2. As the
figure illustrates, there are three possible multi-hop policies
from the farthest node to the base station.

With the knowledge that minimum-energy hops have a
distance dchar, we can naively choose the first policy in Fig-
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ure 13, which specifies two hops of equal distance dchar.
Doing so, however, ignores the presence of an additional
relay node whose energy is available for consumption. The
other two policies in Figure 13 include this relay node, but
each of these would cause the node with the longest hop to
run out of energy well before the others have been
exhausted. The problem is one of an uneven spatial distri-
bution of energy.

In cases like these, the solution for maximum relay life-
time turns out to be a rotation of roles over time, leading to
the depletion of all nodes at about the same time. The final
numerical result is a function of the node spacing (in terms
of characteristic distance) and the initial node energies, and
can be solved using a linear program that considers these
constraints [12]. For this example, the optimal role assign-
ment for equal-energy nodes utilizes sends 3/11 of all
packets through each of the one-hop routes and the remain-
ing 5/11 of packets through the two-hop route. Role rota-
tion compensates for uneven spatial distribution in energy.

4. Conclusion 

Wireless microsensor networks utilize hundreds to thou-
sands of tiny, inexpensive, and densely placed nodes to
achieve unprecedented sensing resolution and fault-toler-
ance. The nodes’ limited energy capacity and extended
lifetime requirements demand that all aspects of a
microsensor node be designed in a power aware fashion.
Both digital and analog node circuitry must reflect the dis-
tinctive operational characteristics of microsensors, nota-
bly performance demands that have a low average but high
variability. Power aware design cannot end with hardware;
software and communication protocols for microsensors
must actively contribute to energy savings through energy-
efficient operational policies and sacrifices in performance.
This necessarily implies that the software, or a suitable
layer of abstraction, must call upon accurate energy and
performance models for the hardware upon which it runs.
As with all emerging wireless applications, the future of
microsensor networks is reliant on designs that success-
fully meld unique operational demands with innovative cir-
cuit design for maximal energy efficiency.
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